inverse of matrix pencil
[Bfs,Bis,chis]=glever(E,A [,s])
two real square matrices of same dimensions
character string (default value 's
')
two polynomial matrices
polynomial
Computation of
(s*E-A)^-1
by generalized Leverrier's algorithm for a matrix pencil.
chis
= characteristic polynomial (up to a multiplicative constant).
Bfs
= numerator polynomial matrix.
Bis
= polynomial matrix ( - expansion of (s*E-A)^-1
at infinity).
Note the - sign before Bis
.
This function uses cleanp
to simplify Bfs,Bis
and chis
.
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1]; [Bfs,Bis,chis]=glever(F) inv(F)-((Bfs/chis) - Bis) | ![]() | ![]() |