A B C D E F G H I K L M N O P R S T U V W
| activation | Activation functions between network layers | 
| activation_2 | Activation functions between network layers | 
| adjust_deg_free | Parameters to adjust effective degrees of freedom | 
| all_neighbors | Parameter to determine which neighbors to use | 
| bart-param | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. | 
| batch_size | Neural network parameters | 
| buffer | Buffer size | 
| class_weights | Parameters for class weights for imbalanced problems | 
| conditional_min_criterion | Parameters for possible engine parameters for partykit models | 
| conditional_test_statistic | Parameters for possible engine parameters for partykit models | 
| conditional_test_type | Parameters for possible engine parameters for partykit models | 
| confidence_factor | Parameters for possible engine parameters for C5.0 | 
| cost | Support vector machine parameters | 
| cost_complexity | Parameter functions related to tree- and rule-based models. | 
| degree | Parameters for exponents | 
| degree_int | Parameters for exponents | 
| deg_free | Degrees of freedom (integer) | 
| diagonal_covariance | Parameters for possible engine parameters for sda models | 
| dist_power | Minkowski distance parameter | 
| dropout | Neural network parameters | 
| epochs | Neural network parameters | 
| extrapolation | Parameters for possible engine parameters for Cubist | 
| finalize | Functions to finalize data-specific parameter ranges | 
| finalize.default | Functions to finalize data-specific parameter ranges | 
| finalize.list | Functions to finalize data-specific parameter ranges | 
| finalize.logical | Functions to finalize data-specific parameter ranges | 
| finalize.param | Functions to finalize data-specific parameter ranges | 
| finalize.parameters | Functions to finalize data-specific parameter ranges | 
| freq_cut | Near-zero variance parameters | 
| fuzzy_thresholding | Parameters for possible engine parameters for C5.0 | 
| get_batch_sizes | Functions to finalize data-specific parameter ranges | 
| get_log_p | Functions to finalize data-specific parameter ranges | 
| get_n | Functions to finalize data-specific parameter ranges | 
| get_n_frac | Functions to finalize data-specific parameter ranges | 
| get_n_frac_range | Functions to finalize data-specific parameter ranges | 
| get_p | Functions to finalize data-specific parameter ranges | 
| get_rbf_range | Functions to finalize data-specific parameter ranges | 
| grid_random | Create grids of tuning parameters | 
| grid_random.list | Create grids of tuning parameters | 
| grid_random.param | Create grids of tuning parameters | 
| grid_random.parameters | Create grids of tuning parameters | 
| grid_regular | Create grids of tuning parameters | 
| grid_regular.list | Create grids of tuning parameters | 
| grid_regular.param | Create grids of tuning parameters | 
| grid_regular.parameters | Create grids of tuning parameters | 
| grid_space_filling | Space-filling parameter grids | 
| grid_space_filling.list | Space-filling parameter grids | 
| grid_space_filling.param | Space-filling parameter grids | 
| grid_space_filling.parameters | Space-filling parameter grids | 
| harmonic_frequency | Harmonic Frequency | 
| has_unknowns | Placeholder for unknown parameter values | 
| hidden_units | Neural network parameters | 
| hidden_units_2 | Neural network parameters | 
| initial_umap | Initialization method for UMAP | 
| is_unknown | Placeholder for unknown parameter values | 
| kernel_offset | Kernel parameters | 
| Laplace | Laplace correction parameter | 
| learn_rate | Learning rate | 
| loss_reduction | Parameter functions related to tree- and rule-based models. | 
| lower_limit | Limits for the range of predictions | 
| lower_quantile | Parameters for possible engine parameters for ranger | 
| max_nodes | Parameters for possible engine parameters for randomForest | 
| max_num_terms | Parameters for possible engine parameters for earth models | 
| max_rules | Parameters for possible engine parameters for Cubist | 
| max_times | Word frequencies for removal | 
| max_tokens | Maximum number of retained tokens | 
| min_dist | Parameter for the effective minimum distance between embedded points | 
| min_n | Parameter functions related to tree- and rule-based models. | 
| min_times | Word frequencies for removal | 
| min_unique | Number of unique values for pre-processing | 
| mixture | Mixture of penalization terms | 
| momentum | Gradient descent momentum parameter | 
| mtry | Number of randomly sampled predictors | 
| mtry_long | Number of randomly sampled predictors | 
| mtry_prop | Proportion of Randomly Selected Predictors | 
| neighbors | Number of neighbors | 
| new-param | Tools for creating new parameter objects | 
| new_qual_param | Tools for creating new parameter objects | 
| new_quant_param | Tools for creating new parameter objects | 
| no_global_pruning | Parameters for possible engine parameters for C5.0 | 
| num_breaks | Number of cut-points for binning | 
| num_clusters | Number of Clusters | 
| num_comp | Number of new features | 
| num_hash | Text hashing parameters | 
| num_knots | Number of knots (integer) | 
| num_leaves | Possible engine parameters for lightbgm | 
| num_random_splits | Parameters for possible engine parameters for ranger | 
| num_runs | Number of Computation Runs | 
| num_terms | Number of new features | 
| num_tokens | Parameter to determine number of tokens in ngram | 
| over_ratio | Parameters for class-imbalance sampling | 
| parameters | Information on tuning parameters within an object | 
| parameters.default | Information on tuning parameters within an object | 
| parameters.list | Information on tuning parameters within an object | 
| parameters.param | Information on tuning parameters within an object | 
| penalty | Amount of regularization/penalization | 
| penalty_L1 | Parameters for possible engine parameters for xgboost | 
| penalty_L2 | Parameters for possible engine parameters for xgboost | 
| predictor_prop | Proportion of predictors | 
| predictor_winnowing | Parameters for possible engine parameters for C5.0 | 
| prior_mixture_threshold | Bayesian PCA parameters | 
| prior_outcome_range | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. | 
| prior_slab_dispersion | Bayesian PCA parameters | 
| prior_terminal_node_coef | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. | 
| prior_terminal_node_expo | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. | 
| prod_degree | Parameters for exponents | 
| prune | Parameter functions related to tree- and rule-based models. | 
| prune_method | MARS pruning methods | 
| ranger_class_rules | Parameters for possible engine parameters for ranger | 
| ranger_reg_rules | Parameters for possible engine parameters for ranger | 
| ranger_split_rules | Parameters for possible engine parameters for ranger | 
| range_get | Tools for working with parameter ranges | 
| range_limits | Limits for the range of predictions | 
| range_set | Tools for working with parameter ranges | 
| range_validate | Tools for working with parameter ranges | 
| rate_decay | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| rate_initial | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| rate_largest | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| rate_reduction | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| rate_schedule | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| rate_steps | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| rate_step_size | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| rbf_sigma | Kernel parameters | 
| regularization_factor | Parameters for possible engine parameters for ranger | 
| regularization_method | Estimation methods for regularized models | 
| regularize_depth | Parameters for possible engine parameters for ranger | 
| rule_bands | Parameters for possible engine parameters for C5.0 | 
| sample_prop | Parameter functions related to tree- and rule-based models. | 
| sample_size | Parameter functions related to tree- and rule-based models. | 
| scale_factor | Kernel parameters | 
| scale_pos_weight | Parameters for possible engine parameters for xgboost | 
| scheduler-param | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| select_features | Parameter to enable feature selection | 
| shrinkage_correlation | Parameters for possible engine parameters for sda models | 
| shrinkage_frequencies | Parameters for possible engine parameters for sda models | 
| shrinkage_variance | Parameters for possible engine parameters for sda models | 
| signed_hash | Text hashing parameters | 
| significance_threshold | Parameters for possible engine parameters for ranger | 
| smoothness | Kernel Smoothness | 
| spline_degree | Parameters for exponents | 
| splitting_rule | Parameters for possible engine parameters for ranger | 
| stop_iter | Early stopping parameter | 
| summary_stat | Rolling summary statistic for moving windows | 
| survival_link | Survival Model Link Function | 
| surv_dist | Parametric distributions for censored data | 
| svm_margin | Support vector machine parameters | 
| target_weight | Amount of supervision parameter | 
| threshold | General thresholding parameter | 
| token | Token types | 
| trees | Parameter functions related to tree- and rule-based models. | 
| tree_depth | Parameter functions related to tree- and rule-based models. | 
| trim_amount | Amount of Trimming | 
| unbiased_rules | Parameters for possible engine parameters for Cubist | 
| under_ratio | Parameters for class-imbalance sampling | 
| unique_cut | Near-zero variance parameters | 
| unknown | Placeholder for unknown parameter values | 
| update.parameters | Update a single parameter in a parameter set | 
| upper_limit | Limits for the range of predictions | 
| validation_set_prop | Proportion of data used for validation | 
| values_activation | Activation functions between network layers | 
| values_initial_umap | Initialization method for UMAP | 
| values_prune_method | MARS pruning methods | 
| values_regularization_method | Estimation methods for regularized models | 
| values_scheduler | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. | 
| values_summary_stat | Rolling summary statistic for moving windows | 
| values_survival_link | Survival Model Link Function | 
| values_surv_dist | Parametric distributions for censored data | 
| values_test_statistic | Parameters for possible engine parameters for partykit models | 
| values_test_type | Parameters for possible engine parameters for partykit models | 
| values_token | Token types | 
| values_weight_func | Kernel functions for distance weighting | 
| values_weight_scheme | Term frequency weighting methods | 
| value_inverse | Tools for working with parameter values | 
| value_sample | Tools for working with parameter values | 
| value_seq | Tools for working with parameter values | 
| value_set | Tools for working with parameter values | 
| value_transform | Tools for working with parameter values | 
| value_validate | Tools for working with parameter values | 
| vocabulary_size | Number of tokens in vocabulary | 
| weight | Parameter for '"double normalization"' when creating token counts | 
| weight_func | Kernel functions for distance weighting | 
| weight_scheme | Term frequency weighting methods | 
| window_size | Parameter for the moving window size |