Numerical integration in one dimension using the double exponential method of M. Mori.  
#include <dumux/common/doubleexpintegrator.hh>
|  | 
| template<class Function, typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...> | 
| static Scalar | integrate (const Function &f, const Scalar a, const Scalar b, const Scalar targetAbsoluteError, int &numFunctionEvaluations, Scalar &errorEstimate) | 
|  | Integrate an analytic function over a finite interval. 
 | 
|  | 
| template<class Function, typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...> | 
| static Scalar | integrate (const Function &f, const Scalar a, const Scalar b, const Scalar targetAbsoluteError) | 
|  | Integrate an analytic function over a finite interval. 
 | 
|  | 
◆ integrate() [1/2]
template<class Scalar> 
template<class Function, typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...> 
 
- Note
- This version overloaded to not require arguments passed in for function evaluation counts or error estimates. 
- Parameters
- 
  
    | f | the integrand (invocable with a single scalar) |  | a | lower integral bound |  | b | upper integral bound |  | targetAbsoluteError | desired absolute error in the result |  
 
- Returns
- The value of the integral. 
 
 
◆ integrate() [2/2]
template<class Scalar> 
template<class Function, typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...> 
  
  | 
        
          | static Scalar Dumux::DoubleExponentialIntegrator< Scalar >::integrate | ( | const Function & | f, |  
          |  |  | const Scalar | a, |  
          |  |  | const Scalar | b, |  
          |  |  | const Scalar | targetAbsoluteError, |  
          |  |  | int & | numFunctionEvaluations, |  
          |  |  | Scalar & | errorEstimate ) |  | inlinestatic | 
 
- Parameters
- 
  
    | f | the integrand (invocable with a single scalar) |  | a | lower limit of integration |  | b | upper limit of integration |  | targetAbsoluteError | desired bound on error |  | numFunctionEvaluations | number of function evaluations used |  | errorEstimate | estimate for error in integration |  
 
- Returns
- The value of the integral 
 
 
The documentation for this class was generated from the following file: