|  | 
| class | Dumux::IstlSolverFactoryBackend< LinearSolverTraits, LinearAlgebraTraits > | 
|  | A linear solver using the dune-istl solver factory to choose the solver and preconditioner at runtime.  More... 
 | 
|  | 
| class | Dumux::Detail::IstlIterativeLinearSolver< LinearSolverTraits, LinearAlgebraTraits, InverseOperator, PreconditionerFactory, convertMultiTypeLATypes > | 
|  | Standard dune-istl iterative linear solvers.  More... 
 | 
|  | 
| class | Dumux::Detail::DirectIstlSolver< LSTraits, LATraits, Solver, convertMultiTypeVectorAndMatrix > | 
|  | Direct dune-istl linear solvers.  More... 
 | 
|  | 
| class | Dumux::LinearSolverParameters< LinearSolverTraits > | 
|  | Generates a parameter tree required for the linear solvers and precondioners of the Dune ISTL.  More... 
 | 
|  | 
| class | Dumux::MatrixConverter< MultiTypeBlockMatrix, Scalar > | 
|  | A helper class that converts a Dune::MultiTypeBlockMatrix into a plain Dune::BCRSMatrix TODO: allow block sizes for BCRSMatrix other than 1x1 ?  More... 
 | 
|  | 
| class | Dumux::VectorConverter< MultiTypeBlockVector, Scalar > | 
|  | A helper class that converts a Dune::MultiTypeBlockVector into a plain Dune::BlockVector and transfers back values.  More... 
 | 
|  | 
| class | Dumux::ParallelMatrixHelper< Matrix, GridView, RowDofMapper, rowDofCodim > | 
|  | Helper class for adding up matrix entries for border entities.  More... 
 | 
|  | 
| class | Dumux::LinearPDESolver< Assembler, LinearSolver, Comm > | 
|  | An implementation of a linear PDE solver.  More... 
 | 
|  | 
| class | Dumux::SeqUzawa< M, X, Y, l > | 
|  | A preconditioner based on the Uzawa algorithm for saddle-point problems of the form                  \(\begin{pmatrix}
   A & B \\
   C & D
\end{pmatrix}
\begin{pmatrix}
   u\\
   p
\end{pmatrix}
=
\begin{pmatrix}
   f\\
   g
\end{pmatrix}
\).  More... 
 | 
|  | 
| class | Dumux::ScotchBackend< IndexType > | 
|  | A reordering backend using the scotch library.  More... 
 | 
|  | 
| class | Dumux::IterativePreconditionedSolverImpl | 
|  | A general solver backend allowing arbitrary preconditioners and solvers.  More... 
 | 
|  | 
| class | Dumux::ExplicitDiagonalSolver | 
|  | Solver for simple block-diagonal matrices (e.g. from explicit time stepping schemes)  More... 
 | 
|  | 
| class | Dumux::UzawaBiCGSTABBackend< LinearSolverTraits > | 
|  | A Uzawa preconditioned BiCGSTAB solver for saddle-point problems.  More... 
 | 
|  | 
| class | Dumux::BlockDiagILU0Preconditioner< M, X, Y, blockLevel > | 
|  | A simple ilu0 block diagonal preconditioner.  More... 
 | 
|  | 
| class | Dumux::BlockDiagILU0BiCGSTABSolver | 
|  | A simple ilu0 block diagonal preconditioned BiCGSTABSolver.  More... 
 | 
|  | 
| class | Dumux::BlockDiagILU0RestartedGMResSolver | 
|  | A simple ilu0 block diagonal preconditioned RestartedGMResSolver.  More... 
 | 
|  | 
| class | Dumux::BlockDiagAMGPreconditioner< M, X, Y, blockLevel > | 
|  | A simple ilu0 block diagonal preconditioner.  More... 
 | 
|  | 
| class | Dumux::BlockDiagAMGBiCGSTABSolver | 
|  | A simple ilu0 block diagonal preconditioned BiCGSTABSolver.  More... 
 | 
|  | 
| class | Dumux::LinearSolver | 
|  | Base class for linear solvers.  More... 
 | 
|  | 
| class | Dumux::Detail::StokesPreconditioner< M, X, Y, l > | 
|  | A Stokes preconditioner (saddle-point problem) for the problem     \(\begin{pmatrix} A & B \\ C & 0 \end{pmatrix}
\begin{pmatrix} u \\ p \end{pmatrix} =
\begin{pmatrix} f \\ g \end{pmatrix},
\).  More... 
 | 
|  | 
| class | Dumux::StokesSolver< Matrix, Vector, VelocityGG, PressureGG > | 
|  | Preconditioned iterative solver for the incompressible Stokes problem.  More... 
 | 
|  | 
template<class LSTraits, class LATraits> 
      
 
Initial value: 
        Dune::CGSolver<typename LATraits::SingleTypeVector>,
        
         true
    >
Solver: CG (conjugate gradient) is an iterative method for solving linear systems with a symmetric, positive definite matrix.
See: Helfenstein, R., Koko, J. (2010). "Parallel preconditioned conjugate
gradient algorithm on GPU", Journal of Computational and Applied Mathematics, Volume 236, Issue 15, Pages 3584–3590, http://dx.doi.org/10.1016/j.cam.2011.04.025.
Preconditioner: AMG (algebraic multigrid) 
 
 
template<class LSTraits, class LATraits> 
      
 
Initial value: 
        Dune::BiCGSTABSolver<typename LATraits::SingleTypeVector>,
        
         true
    >
Definition istlsolvers.hh:59
Solver: The BiCGSTAB (stabilized biconjugate gradients method) solver has faster and smoother convergence than the original BiCG. It can be applied to nonsymmetric matrices.
See: Van der Vorst, H. A. (1992). "Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems". SIAM J. Sci. and Stat. Comput. 13 (2): 631–644. doi:10.1137/0913035.
Preconditioner: ILU(n) incomplete LU factorization. The order n indicates fill-in. It can be damped by the relaxation parameter LinearSolver.PreconditionerRelaxation.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press. 
 
 
template<class LSTraits, class LATraits> 
      
 
Initial value: 
        Dune::RestartedGMResSolver<typename LATraits::SingleTypeVector>,
        
         true
    >
Solver: The GMRes (generalized minimal residual) method is an iterative method for the numerical solution of a nonsymmetric system of linear equations.
See: Saad, Y., Schultz, M. H. (1986). "GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems." SIAM J. Sci. and Stat. Comput. 7: 856–869.
Preconditioner: ILU(n) incomplete LU factorization. The order n indicates fill-in. It can be damped by the relaxation parameter LinearSolver.PreconditionerRelaxation.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press. 
 
 
template<class LSTraits, class LATraits> 
      
 
Initial value: 
        Dune::BiCGSTABSolver<typename LATraits::Vector>,
    >
Solver: The BiCGSTAB (stabilized biconjugate gradients method) solver has faster and smoother convergence than the original BiCG. While, it can be applied to nonsymmetric matrices, the preconditioner SSOR assumes symmetry.
See: Van der Vorst, H. A. (1992). "Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems". SIAM J. Sci. and Stat. Comput. 13 (2): 631–644. doi:10.1137/0913035.
Preconditioner: SSOR symmetric successive overrelaxation method. The relaxation is controlled by the parameter LinearSolver.PreconditionerRelaxation. In each preconditioning step, it is applied as often as given by the parameter LinearSolver.PreconditionerIterations.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press. 
 
 
template<class LSTraits, class LATraits> 
      
 
Initial value: 
        Dune::CGSolver<typename LATraits::Vector>,
    >
Solver: CG (conjugate gradient) is an iterative method for solving linear systems with a symmetric, positive definite matrix.
See: Helfenstein, R., Koko, J. (2010). "Parallel preconditioned conjugate
gradient algorithm on GPU", Journal of Computational and Applied Mathematics, Volume 236, Issue 15, Pages 3584–3590, http://dx.doi.org/10.1016/j.cam.2011.04.025.
Preconditioner: SSOR symmetric successive overrelaxation method. The relaxation is controlled by the parameter LinearSolver.PreconditionerRelaxation. In each preconditioning step, it is applied as often as given by the parameter LinearSolver.PreconditionerIterations.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press.