Represents all relevant thermodynamic quantities of a multi-phase fluid system assuming immiscibility and thermodynamic equilibrium.  
|  | 
|  | ImmiscibleFluidState ()=default | 
|  | default constructor 
 | 
|  | 
| template<class FluidState, typename std::enable_if_t<!std::is_same< FluidState, ImmiscibleFluidState >::value, int > = 0> | 
|  | ImmiscibleFluidState (const FluidState &fs) | 
|  | copy constructor from arbitrary fluid state 
 | 
|  | 
|  | ImmiscibleFluidState (const ImmiscibleFluidState &fs)=default | 
|  | 
|  | ImmiscibleFluidState (ImmiscibleFluidState &&fs)=default | 
|  | 
| ImmiscibleFluidState & | operator= (const ImmiscibleFluidState &fs)=default | 
|  | 
| ImmiscibleFluidState & | operator= (ImmiscibleFluidState &&fs)=default | 
|  | 
| int | wettingPhase () const | 
|  | Returns the index of the most wetting phase in the fluid-solid configuration (for porous medium systems). 
 | 
|  | 
| Scalar | saturation (int phaseIdx) const | 
|  | Returns the saturation \(S_\alpha\) of a fluid phase \(\alpha\) in \(\mathrm{[-]}\). 
 | 
|  | 
| Scalar | moleFraction (int phaseIdx, int compIdx) const | 
|  | Returns the molar fraction \(x^\kappa_\alpha\) of the component \(\kappa\) in fluid phase \(\alpha\) in \(\mathrm{[-]}\). 
 | 
|  | 
| Scalar | massFraction (int phaseIdx, int compIdx) const | 
|  | Returns the mass fraction \(X^\kappa_\alpha\) of component \(\kappa\) in fluid phase \(\alpha\) in \(\mathrm{[-]}\). 
 | 
|  | 
| Scalar | averageMolarMass (int phaseIdx) const | 
|  | The average molar mass \(\overline M_\alpha\) of phase \(\alpha\) in \(\mathrm{[kg/mol]}\). 
 | 
|  | 
| Scalar | molarity (int phaseIdx, int compIdx) const | 
|  | The molar concentration \(c^\kappa_\alpha\) of component \(\kappa\) in fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\). 
 | 
|  | 
| Scalar | fugacity (int phaseIdx, int compIdx) const | 
|  | The fugacity \(f^\kappa_\alpha\) of component \(\kappa\) in fluid phase \(\alpha\) in \(\mathrm{[Pa]}\). 
 | 
|  | 
| Scalar | fugacityCoefficient (int phaseIdx, int compIdx) const | 
|  | The fugacity coefficient \(\Phi^\kappa_\alpha\) of component \(\kappa\) in fluid phase \(\alpha\) in \(\mathrm{[-]}\). 
 | 
|  | 
| Scalar | partialPressure (int phaseIdx, int compIdx) const | 
|  | The partial pressure of a component in a phase \(\mathrm{[Pa]}\). 
 | 
|  | 
| Scalar | molarVolume (int phaseIdx) const | 
|  | The molar volume \(v_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[m^3/mol]}\). 
 | 
|  | 
| Scalar | density (int phaseIdx) const | 
|  | The mass density \(\rho_\alpha\) of the fluid phase \(\alpha\) in \(\mathrm{[kg/m^3]}\). 
 | 
|  | 
| Scalar | molarDensity (int phaseIdx) const | 
|  | The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\). 
 | 
|  | 
| Scalar | temperature (int phaseIdx) const | 
|  | The absolute temperature \(T_\alpha\) of a fluid phase \(\alpha\) in \(\mathrm{[K]}\). 
 | 
|  | 
| Scalar | pressure (int phaseIdx) const | 
|  | The pressure \(p_\alpha\) of a fluid phase \(\alpha\) in \(\mathrm{[Pa]}\). 
 | 
|  | 
| Scalar | enthalpy (int phaseIdx) const | 
|  | The specific enthalpy \(h_\alpha\) of a fluid phase \(\alpha\) in \(\mathrm{[J/kg]}\). 
 | 
|  | 
| Scalar | internalEnergy (int phaseIdx) const | 
|  | The specific internal energy \(u_\alpha\) of a fluid phase \(\alpha\) in \(\mathrm{[J/kg]}\). 
 | 
|  | 
| Scalar | viscosity (int phaseIdx) const | 
|  | The dynamic viscosity \(\mu_\alpha\) of fluid phase \(\alpha\) in \(\mathrm{[Pa s]}\). 
 | 
|  | 
| Scalar | temperature () const | 
|  | The temperature within the domain \(\mathrm{[K]}\). 
 | 
|  | 
| Scalar | fugacity (int compIdx) const | 
|  | The fugacity of a component \(\mathrm{[Pa]}\). 
 | 
|  | 
| template<class FluidState> | 
| void | assign (const FluidState &fs) | 
|  | Retrieve all parameters from an arbitrary fluid state. 
 | 
|  | 
| void | setTemperature (int phaseIdx, Scalar value) | 
|  | Set the temperature \(\mathrm{[K]}\) of a fluid phase. 
 | 
|  | 
| void | setTemperature (Scalar value) | 
|  | Set the temperature \(\mathrm{[K]}\) of a fluid phase. 
 | 
|  | 
| void | setPressure (int phaseIdx, Scalar value) | 
|  | Set the fluid pressure of a phase \(\mathrm{[Pa]}\). 
 | 
|  | 
| void | setSaturation (int phaseIdx, Scalar value) | 
|  | Set the saturation of a phase \(\mathrm{[-]}\). 
 | 
|  | 
| void | setDensity (int phaseIdx, Scalar value) | 
|  | Set the density of a phase \(\mathrm{[kg/m^3]}\). 
 | 
|  | 
| void | setMolarDensity (int phaseIdx, Scalar value) | 
|  | Set the molar density of a phase \(\mathrm{[kg/m^3]}\). 
 | 
|  | 
| void | setEnthalpy (int phaseIdx, Scalar value) | 
|  | Set the specific enthalpy of a phase \(\mathrm{[J/kg]}\). 
 | 
|  | 
| void | setViscosity (int phaseIdx, Scalar value) | 
|  | Set the dynamic viscosity of a phase \(\mathrm{[Pa s]}\). 
 | 
|  | 
| void | setWettingPhase (int phaseIdx) | 
|  | Set the index of the most wetting phase. 
 | 
|  | 
template<class ScalarType, class FluidSystem> 
 
The fugacity is defined as: \(f_\alpha^\kappa := \Phi^\kappa_\alpha x^\kappa_\alpha p_\alpha \;,\) where \(\Phi^\kappa_\alpha\) is the fugacity coefficient [reid1987] . The physical meaning of fugacity becomes clear from the equation: 
\[f_\alpha^\kappa = p_\alpha \exp\left\{\frac{\zeta^\kappa_\alpha}{R T_\alpha} \right\} \;,\]
 where \(\zeta^\kappa_\alpha\) represents the \(\kappa\)'s chemical potential in phase \(\alpha\), \(R\) stands for the ideal gas constant, and \(T_\alpha\) for the absolute temperature of phase \(\alpha\). Assuming thermal equilibrium, there is a one-to-one mapping between a component's chemical potential \(\zeta^\kappa_\alpha\) and its fugacity \(f^\kappa_\alpha\). In this case chemical equilibrium can thus be expressed by: 
\[f^\kappa := f^\kappa_\alpha = f^\kappa_\beta\quad\forall \alpha, \beta\]
To avoid numerical issues with code that assumes miscibility, we return a fugacity of 0 for components which do not mix with the specified phase. (Actually it is undefined, but for finite fugacity coefficients, the only way to get components completely out of a phase is 0 to feed it zero fugacity.)