Darcy's law for cell-centered finite volume schemes with multi-point flux approximation.  
#include <dumux/flux/ccmpfa/darcyslaw.hh>
|  | 
| template<class ElementFluxVariablesCache> | 
| static Scalar | flux (const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolumeFace &scvf, const unsigned int phaseIdx, const ElementFluxVariablesCache &elemFluxVarsCache) | 
|  | Returns the advective flux of a fluid phase across the given sub-control volume face. 
 | 
|  | 
◆ Cache
◆ DiscretizationMethod
◆ flux()
template<class TypeTag> 
template<class ElementFluxVariablesCache> 
  
  | 
        
          | static Scalar Dumux::DarcysLawImplementation< TypeTag, DiscretizationMethods::CCMpfa >::flux | ( | const Problem & | problem, |  
          |  |  | const Element & | element, |  
          |  |  | const FVElementGeometry & | fvGeometry, |  
          |  |  | const ElementVolumeVariables & | elemVolVars, |  
          |  |  | const SubControlVolumeFace & | scvf, |  
          |  |  | const unsigned int | phaseIdx, |  
          |  |  | const ElementFluxVariablesCache & | elemFluxVarsCache ) |  | inlinestatic | 
 
- Note
- This assembles the term \(-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\), where \(|\sigma|\) is the area of the face and \(\mathbf{n}\) is the outer normal vector. Thus, the flux is given in N*m, and can be converted into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme for the mobility or the product of density and mobility, respectively. 
 
 
◆ discMethod
The documentation for this class was generated from the following file: