Single-phase Reynolds-Averaged Navier-Stokes flow. More...
A single-phase, isothermal Reynolds-Averaged Navier-Stokes model.
This model implements a single-phase, isothermal Reynolds-Averaged Navier-Stokes model, solving the momentum balance equation
\[\frac{\partial (\varrho \textbf{v})}{\partial t} + \nabla \cdot (\varrho \textbf{v} \textbf{v}^{\text{T}}) = \nabla \cdot (\mu_\textrm{eff} (\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}})) - \nabla p + \varrho \textbf{g} - \textbf{f} \]
The effective viscosity is composed of the fluid and the eddy viscosity:
\[ \mu_\textrm{eff} = \mu + \mu_\textrm{t} \]
.
| Topics | |
| 0-Eq. Models | |
| Zero-equation or algebraic turbulence models. | |
| 1-Eq. Models | |
| One-equation turbulence model by Spalart-Allmaras. | |
| 2-Eq. Models | |
| Two-equation turbulence models. | |
| Files | |
| file | boundarytypes.hh | 
| Class to specify the type of a boundary condition for the RANS extension to the Navier-Stokes model. | |
| file | iofields.hh | 
| Adds I/O fields for the Reynolds-Averaged Navier-Stokes model. | |
| file | model.hh | 
| A single-phase, isothermal Reynolds-Averaged Navier-Stokes model. | |
| file | problem.hh | 
| the turbulence-model-specfic RANS problem | |
| file | volumevariables.hh | 
| Volume variables for the isothermal single-phase Reynolds-Averaged Navier-Stokes models. | |
| Classes | |
| class | Dumux::RANSBoundaryTypes< ModelTraits, numEq > | 
| Class to specify the type of a boundary condition for the RANS extension to the Navier-Stokes model.  More... | |
| struct | Dumux::RANSIOFields | 
| Adds I/O fields for the Reynolds-Averaged Navier-Stokes model.  More... | |
| struct | Dumux::Properties::RANSModelTraits< dimension > | 
| Traits for the Reynolds-averaged Navier-Stokes model.  More... | |
| class | Dumux::RANSProblemBase< TypeTag > | 
| Reynolds-Averaged Navier-Stokes problem base class.  More... | |
| class | Dumux::RANSVolumeVariables< Traits, NSVolumeVariables > | 
| Volume variables for the isothermal single-phase Reynolds-Averaged Navier-Stokes models.  More... | |